video-banner
none

X-RAY TESTING SHOWS POTENTIAL OF LIGHTWEIGHT MAGNESIUM

22-07-2019
by 
in 
Professor Jian-Feng Nie, Monash University: "Lightweight magnesium has tremendous potential"

Engineers are constantly seeking strong, lightweight materials for use in cars, planes and other vehicles to improve aerodynamics, speed, fuel efficiency and weight load. A world-first study by researchers from Monash University, Chongqing University (China) and the CSIRO has discovered a technique that can be used for creating stronger, lightweight magnesium alloys that could improve structural integrity in the automobile and aerospace industries.

The researchers discovered a pattern of alloying element segregation in twin boundaries by using atomic-resolution X-ray mapping at much lower electron voltage. Their findings have been published in the prestigious journal Nature Communications.

The discovery is significant, as the deformation of lightweight magnesium during thermomechanical processes and applications prevents those alloys from being used more widely in place of steel. It also has implications for other light alloys such as aluminium and titanium.

“Lightweight magnesium has tremendous potential for energy-efficient and environmentally friendly applications,” says lead author Professor Jian-Feng Nie, from Monash University’s Department of Materials Science and Engineering. “But the segregation in these materials is prone to electron beam damage.

“The electron beam damage is most severe when segregated solute atoms become a single atomic column. This impacts the formability, deformation behaviour and tension-compression strength of wrought magnesium products. We demonstrated that it’s possible to solve this difficulty by using atomic-resolution X-ray mapping at a much lower accelerating voltage of electrons [120kV] instead of 300kV, which is commonly used.

“We further discovered that the new segregation pattern increases the boundary pinning effect by more than 30 times, and switches the migration mechanism of the twin boundary from the commonly accepted mode to a new one.”

The researchers used a magnesium alloy containing neodymium and silver as part of their study, which contains superior mechanical properties at both ambient and elevated temperatures. They found significant improvements in shear stress, by 33 times, and elastic strain limit occurred when the twin boundary was populated with neodymium and silver.

The increased charge density between silver and neodymium with the magnesium indicated a stronger bond and strengthening of the twin. As force is applied, the magnesium is pushed towards the neodymium and away from the silver, creating a stronger, lightweight alloy.

“Our work demonstrates that the atomic-scale analysis of the structure and chemistry of solute segregation in metallic alloys with complex compositions is now possible,” Prof Nie says.

Related news & editorials

  1. 23.08.2019
    23.08.2019
    by      In
    Leading gas and engineering company BOC, a subsidiary of Linde plc, has commenced Queensland’s first renewable hydrogen project at its production facility in Bulwer Island, Brisbane.
    The $3.1 million end-to-end renewable hydrogen supply project has received $950,000 of funding from the Australian... Read More
  2. 22.08.2019
    22.08.2019
    by      In
    Kingfield Galvanizing, located in the northern Melbourne suburb of Somerton, has been recognised as one of Australia and New Zealand’s most innovative companies. The prestigious annual Most Innovative Companies list, published by The Australian Financial Review and Boss Magazine, is based on a... Read More
  3. 21.08.2019
    21.08.2019
    by      In
    Australian quantum cybersecurity specialist QuintessenceLabs is leading a project to develop a new breed of microchip-scale quantum random number generators to improve IoT security.
    The consortium also includes the University of New South Wales, the Australian Semiconductor Technology Company,... Read More
  4. 20.08.2019
    20.08.2019
    by      In
    The first electric cargo van assembled by the Australian Clean Energy Electric Vehicle Group (ACE-EV) has been revealed at the Tonsley Innovation District in Adelaide’s southern suburbs.
    The venue was significant, as the innovation hub is located in the former Mitsubishi Motors main assembly... Read More