none

X-RAY TESTING SHOWS POTENTIAL OF LIGHTWEIGHT MAGNESIUM

22-07-2019
by 
in 
Professor Jian-Feng Nie, Monash University: "Lightweight magnesium has tremendous potential"

Engineers are constantly seeking strong, lightweight materials for use in cars, planes and other vehicles to improve aerodynamics, speed, fuel efficiency and weight load. A world-first study by researchers from Monash University, Chongqing University (China) and the CSIRO has discovered a technique that can be used for creating stronger, lightweight magnesium alloys that could improve structural integrity in the automobile and aerospace industries.

The researchers discovered a pattern of alloying element segregation in twin boundaries by using atomic-resolution X-ray mapping at much lower electron voltage. Their findings have been published in the prestigious journal Nature Communications.

The discovery is significant, as the deformation of lightweight magnesium during thermomechanical processes and applications prevents those alloys from being used more widely in place of steel. It also has implications for other light alloys such as aluminium and titanium.

“Lightweight magnesium has tremendous potential for energy-efficient and environmentally friendly applications,” says lead author Professor Jian-Feng Nie, from Monash University’s Department of Materials Science and Engineering. “But the segregation in these materials is prone to electron beam damage.

“The electron beam damage is most severe when segregated solute atoms become a single atomic column. This impacts the formability, deformation behaviour and tension-compression strength of wrought magnesium products. We demonstrated that it’s possible to solve this difficulty by using atomic-resolution X-ray mapping at a much lower accelerating voltage of electrons [120kV] instead of 300kV, which is commonly used.

“We further discovered that the new segregation pattern increases the boundary pinning effect by more than 30 times, and switches the migration mechanism of the twin boundary from the commonly accepted mode to a new one.”

The researchers used a magnesium alloy containing neodymium and silver as part of their study, which contains superior mechanical properties at both ambient and elevated temperatures. They found significant improvements in shear stress, by 33 times, and elastic strain limit occurred when the twin boundary was populated with neodymium and silver.

The increased charge density between silver and neodymium with the magnesium indicated a stronger bond and strengthening of the twin. As force is applied, the magnesium is pushed towards the neodymium and away from the silver, creating a stronger, lightweight alloy.

“Our work demonstrates that the atomic-scale analysis of the structure and chemistry of solute segregation in metallic alloys with complex compositions is now possible,” Prof Nie says.

Related news & editorials

  1. 22.09.2021
    22.09.2021
    by      In
    The Northern Territory (NT) Government in partnership with the Advanced Manufacturing Growth Centre (AMGC) has opened applications to the total $7.5 million Advanced Manufacturing Ecosystem Fund (AMEF) as appreciation for local manufacturing rises in the Territory.
    The Fund delivers on the... Read More
  2. 22.09.2021
    22.09.2021
    by      In
    Towns split by interstate borders are used to living as one community so industries and businesses on the border face unique challenges.
    Therefore, The Victorian Government will deploy a team of locally based ‘Border Brokers’ to support industries and businesses impacted by restrictions on Victoria... Read More
  3. 22.09.2021
    22.09.2021
    by      In
    Popular snack foods; Kettle Chips, Thins, Cheezels and CC’s could soon be manufactured in a new premises in the Western suburbs.
    A $222 million development proposal could see the Snack Brands Australia warehouse and distribution centre on Distribution Drive in Orchard Hills expanded to include food... Read More
  4. 20.09.2021
    20.09.2021
    by      In
    Boeing and RMIT are joining forces in an exciting collaboration to develop local solutions for the manufacturing of space equipment.
    “Australia’s burgeoning space sector requires the production of complex, low volume, bespoke components not suited to conventional manufacturing techniques,” Boeing... Read More
Products
Suppliers