UNIVERSITY RESEARCHERS LOOK FOR LOW-COST BATTERY SOLUTIONS

13-08-2019
Professor Maria Forsyth, Deakin University: "safe, low-cost, high-capacity, high-performing batteries"

Researchers at Deakin University are working to create a new type of battery material that will reduce the cost and environmental impact of high-performance batteries.

The team from the university’s Institute for Frontier Materials is working in partnership with technology company Calix at its Bacchus Marsh manufacturing facility and Melbourne-based chemical manufacturing company Boron Molecular to explore the applications of a readily available compound in comparison to current standard ingredients, which are more costly and harder to source.

The three-year project has received $3 million from the Federal Government’s Cooperative Research Centre Projects programme, which supports short-term industry-led collaborations in new technologies, products and services.

IFM Deputy Director Professor Maria Forsyth, who leads the team, says energy storage is a growing area of research, but the challenge is to develop manufacturing capability in Australia.

“There is a global search for safe, low-cost, high-capacity, high-performing batteries given the demand for high performance energy storage and electric vehicles,” she says. “The challenge for Australia is to develop a sustainable battery manufacturing industry that has global reach through process innovation.”

Professor Forsyth says Deakin is ideally placed to lead the research, with the IFM hosting the Battery Technology Research and Innovation Hub (BatTRI-Hub), a world-class research and innovation centre focused on advanced battery prototyping and the commercialisation of energy storage technologies.

The team will explore the use of CalixFlash Calcination technology to produce customised micron-sized nano-electroactive materials for intercalation-based anodes and cathodes.

These will be integrated with optimised ionic electrolytes, developed with Boron Molecular and Deakin, to make up to 10kWh battery pack prototypes at Deakin, through BatTRI-Hub.

Professor Patrick Howlett, another member of the research team, says this will be the first time this type of research had been undertaken in Australia for batteries.

“We will be using high-rate processing technology with Australian materials,” he says. “These materials will also have capacity to go into high performance supercapacitors which store charge like a battery and can dispense that charge very quickly.”

The project will involve a field trial of the battery packs, including solar applications linked to small solar PV systems and the Deakin Microgrid, currently under development at Deakin’s Waurn Ponds campus, as well as creation of a data-analytics database that will play a vital role in the design process.

Importantly, the project will develop a roadmap to set out commercialisation pathways and a blueprint for an advanced manufacturing hub of nano-active materials, electrolytes and packing technologies for Australia that will include engagement with minerals providers to account for raw materials requirements.

RELATED NEWS

  1. CeMAT Australia, the global trade fair for materials handling, warehousing, intralogistics and supply chain is back for the first time in-person since 2018.
    The event is scheduled for 19-21 July at Melbourne Convention and Exhibition Centre abd CeMat Australia is welcoming all Industry Update...
  2. Home grown manufacturers are being encouraged to nominate for the Victorian Manufacturing Hall of Fame Awards.Minister for Industry Support and Recovery Martin Pakula recently opened nominations with this year marking the return of the Awards for the first time since 2019 and also the 20th...
  3. Australia’s medical goods supply chains would be strengthened through the creation of a new $1.5 billion fund by an incoming Labor government, designed to avoid a repeat of COVID-19 shortages. It would  design new federal government purchasing strategies to boost domestic medical manufacturing...