none

UNDERSTANDING RED AND BLUE LASER TECHNOLOGY

01-02-2019
by 
in 

Laser triangulation sensors are one of the most sought-after non-contact sensor technologies for measuring position, dimension and speed, and are widely used in industrial automation and robotic applications. Currently, two varieties are available: red and blue laser sensors. Choosing the most appropriate sensor type usually depends on several criteria: the target material, its surface type and temperature, and the required measurement speed.

Although conventional red laser technology generally performs well in most applications and provides good measurement stability on a wide range of surfaces, it performs worse than blue laser sensors in situations where accuracy cannot be compromised. Red lasers operate at a wavelength of 700nm, penetrate deeper into the target object and diffuse on the surface to create a blurry region of light that is reflected back to the detector, creating measurement errors due to the lack of focus. Blue lasers operate at a wavelength of 405nm, so they generate a much more focused point on the surface and penetrate less deeply into the object.

Red lasers are therefore better when used for measuring objects with a matte or low-reflective surface, while blue lasers are better with high-reflective surfaces, and when measuring food or organic, transparent and translucent materials. For shiny surfaces, the shorter wavelength of blue lasers generates much less speckling and a lower noise level, to maintain high measurement accuracy.

Red lasers also have limited use when measuring hot and glowing objects. For example, in the steel processing industry, hot glowing metal can reach temperatures as high as 1000ºC. A hot object generally emits a high intensity light at a wavelength similar to that of a red laser, which creates undesirable noise when the light is reflected back to the detector. Blue lasers operate at the opposite end of the visible light spectrum, so they will generate stable and accurate signals and be less affected by an object’s temperature, such as in automotive brake disc deformation testing or measurements on exhaust manifolds. They can also be an ideal way to measure the profile of objects in a processing line.

But red lasers outperform blue lasers in highly dynamic applications due to their high intensity. For example, when measuring package dimensions on a conveyor belt, red lasers are typically a better choice, as they are able to measure accurately at high speed. They are also better in terms of performance and measuring ranges, and are more cost-effective.

In short, in most test and measurement applications, red laser triangulation sensors will be able to perform to requirements. Blue laser triangulation sensors are not always feasible as they are higher priced than red laser triangulation sensors. However, in several niche applications, blue lasers may be the only solution.

Bestech Australia

03 9540 5100

www.bestech.com.au

Related news & editorials

  1. sensor
    12.07.2021
    12.07.2021
    by      In , In
    Thanks to its small diameter of just 14mm, the new weFlux²micro pressure sensor, distributed by Treotham Automation, enables measurements at previously inaccessible locations for the first time. Confined mounting spaces and compact system structures are a major challenge for the pressure... Read More
  2. laser
    22.06.2021
    22.06.2021
    by      In , In
    New cloud-based laser cutting quotation software from ipLaser typically more than halves the time and manual input required by laser cutting companies to prepare precise estimates for world industries using their services.
    The ipLaser cloud-based technology suite – which can automatically process... Read More
  3. 22.06.2021
    22.06.2021
    by      In
    Radar is an established technology, but we are still finding new uses for it. Turck is the distributor of a wide range of versatile, rugged and reliable radar sensors from Banner Engineering.
    Banner FMCW radar sensors can detect both stationary and moving targets. They are reliable in extreme... Read More
  4. The AS7038RB sensor is the industry’s thinnest dedicated sensor for blood oxygen saturation (SpO2) and electrocardiogram (ECG) measurement, at just 3.70 mm × 3.10 mm × 0.65 mm.
    10.03.2021
    10.03.2021
    by      In , In
    Small sensors for innovative applications in medical wearables and remote diagnostic equipment are essential for the healthcare industry.
    The ams AS7038RB and AS7038GB sensors and AS7030B sensor module are based on photoplethysmography (PPG) and electrocardiogram (ECG), two popular methods for... Read More
Products
Suppliers