Published 15-07-2021
| Article appears in August 2021 Issue

Tackling obsolescence with additive manufacturing of spare parts

3D printer

Obsolescence is an unavoidable part of any manufacturing environment. However, it’s concerning that nearly 70% of companies admit they do not know when vital equipment requires replacing, or when they do, they scramble to find replacements. Here, Claudia Jarrett, country manager at automation parts supplier EU Automation, explains why the latest developments in additive manufacturing (AM) could provide a useful answer to the obsolescence problem.

Additive manufacturing is a transformative approach to industrial production that enables the creation of components using a variety of 3D-printing techniques. But before delving into issues surrounding obsolescence, let’s first define what we mean by 3D printing.

The process starts with a component material, initially in the form of powder, which is melted with a laser, layer-upon-layer, to obtain the desired shape. Fundamentally, it’s about adding material instead of removing it like in traditional subtractive manufacturing.

The range of materials that can be used is almost endless – from innovative plastics and metal alloys, to concrete, wax, resins and even human tissue. One of the newest advances in additive manufacturing is the possibility, recently explored by Sandvik Coromant, to print with diamond powder, shaping the hardest material on Earth into any desired geometry.

And, due to additive manufacturing’s ability to print intricate and hollow shapes with no scrap, only the necessary amount of material is added to the process. This has made it a popular technique in fields that require the production of highly specialist components in a small production run, such as aerospace or the biomedical sector. It has also led to exploring how AM could help manage the obsolescence of manufacturing components.

The problem with obsolescence

Our society is characterised by rapid technological developments in the use of big data, automation and computing. These technologies have had a positive impact on manufacturing, allowing plant managers to maximise productivity, reduce waste and create a safer working environment for their employees.

On the other hand, technological components, both hardware and software, tend to have a shorter lifespan. As newer versions of the same components are marketed, the original equipment manufacturer (OEM) might stop producing the version purchased by the manufacturer, making it obsolete.

When obsolete components break, it can be hard to find like-for-like replacements. Managing obsolescence is therefore critical since the breakage or malfunction of obsolete components exposes the business to risk of costly downtime, or even to the possibility of having to upgrade an entire system.


Material engineers are currently researching the potential of additive manufacturing to manage some aspects of obsolescence. The core idea is that if a component is no longer available from the OEM, it could be simply 3D-printed.

For example, the US Airforce has launched research into 3D printing replacement parts for old planes using the Figure 4 3D Printing Platform designed by 3D Systems. The US Airforce will examine how Figure 4 3D Printing Platform can reproduce components for aircraft that are no longer in production.

This comes as the US Airforce often requires out-of-production parts due to manufacturing obsolescence, poor documentation and costs-to-create. And, as replacement parts can be built much faster and in smaller batches through additive manufacturing, no minimum order quantity will be required. In turn, reducing the time aircraft spend on the ground, and the need for warehousing space.

The question of electronics

As promising as this sounds for the aerospace industry, there are still questions that need to be answered before AM can become a standard way of coping with components obsolescence in other industries.

First of all, it is unclear to what extent AM could help manage the obsolescence of electronic components. This sector is one of those that most suffers the consequences of the increasingly short lifespan of components, due to the speed at which new products and solutions are launched on the market.

We could potentially 3D print any mechanical component, but it’s much harder, though theoretically not impossible, to 3D print something like a circuit board or cables and wires. Even when possible, manufacturers should consider the cost and complexity of 3D printing spare components.

Having onsite additive manufacturing capability may require an initial investment of more than £500k and a dedicated design engineering team. While these investments can make sense in an R&D environment, they might be counterproductive to produce spare parts that you might only occasionally need.

In cases like this, it is much faster and cheaper to rely on an automation parts supplier that specialises in obsolete components. Although obsolescence is an unavoidable part of any manufacturing environment, suppliers like EU Automation ensure manufacturers do not need to be scrambling around finding replacements.

3D printed spare parts could be the answer to replacing obsolete parts but won’t completely replace the need for a strong parts supply.

02 9160 0108




  1. The Waste Management and Resource Recovery Association of Australia (WMRR) has welcomed the Queensland government’s announcement that it will ban plastic microbeads, polystyrene packing peanuts and plastic-stemmed cotton buds by 1 September 2023, unveiling its proposed five-year roadmap to phase...
  2. To meet growing demand for Industrial IoT solutions, RS Components launched another 300 products in their RS PRO IoT range in June.
    Some of the products in the range are IO-link sensors, data cables and HMI displays, including antennas and network testing equipment. The company now offers over 8,...
  3. Clover Fields started in 1983 as a boutique business in the Blue Mountains and grew into a thriving factory and design centre which is now based an hour west of Sydney. It was the first company in Australia to replace animal tallow-based soaps with a pure vegetable base, striving to remain at the...