none

SCIENTISTS INVENT NEW ‘SUPER-STEEL’ AS STRONG AS TITANIUM

09-02-2015
by 
in 

Scientists in South Korea have invented a new steel alloy that boasts the same strength-to-weight ratio as titanium – and it is 10 times cheaper.

The new super-strong metal can be used to construct jet engines, missiles, spacecraft, and medical implants – but it can be produced for one-tenth of the cost. 

In order to develop this new kind of metal, the team from Pohang University of Science and Technology had to overcome a problem that had stumped materials scientists for decades, says William Herkewitz at Popular Mechanics.

“In the 1970's, Soviet researchers discovered that adding aluminium to the mix when creating steel can make an incredibly strong and lightweight metal, but this new steel was unavoidably brittle,” he says. "You’d have to exert lots of force to reach the limit of its strength, but once you did, the steel would break rather than bend.”

The issue is that steel on its own is very strong and cheap, but it’s super-heavy. So it’s not that useful in constructing aircraft, and while it’s enjoyed a good run in the car manufacturing industry, the fuel-efficiency people have come to expect is just not possible when you’re trying to support all that hefty steel. 

According to The Economist, between 1995 and 2011, the weight of steel in an average light vehicle fell from 68.1 percent to 60.1 percent, and it’s only going to get lower.

So you need to mix steel with something to make it lighter, and aluminium is the obvious candidate, because it’s so lightweight and cheap.

But when you try to mix aluminium and steel – an alloy of iron, aluminium and carbon – sometimes the aluminium and iron atoms would fuse together in weird ways, forming dense, crystalline structures referred to as B2. And while these structures were certainly strong, they were brittle, which means you really didn’t have to do much to them before they’d crumble and break. Scientists tried adding manganese to the mix, which helped reduce the brittleness, but not enough.

And then, lead researcher and materials scientist, Hansoo Kim, had an idea – manipulate the structure of the aluminium-steel alloy on the nanoscale.

"My original idea was that if I could somehow induce the formation of these B2 crystals, I might be able to disperse them in the steel," he told Herkewitz at Popular Mechanics. So his team figured out that if they moved the B2 crystals around and separated them from each other, the rest of the alloy structure could fill in the gaps and protect them from breaking apart. 

The key to working this out was adding a tiny bit of nickel, which reacts with some of the aluminium to create B2 crystals a few nanometres across.

These crystals form both between and within the steel’s grains when it is annealed (a form of heat treatment).

B2 crystals are resistant to shearing, so when a force is applied to the new material, they do not break. This stops tiny cracks propagating through the stuff, which gives it strength. That strength, allied with the lightness brought by the aluminium, is what Kim was after.

The team has published the results in Nature, and they hope that other materials scientists around the world will use their method to come up with more weird and wonderful new alloys for the market.

They’re currently in discussion with POSCO, one of the world’s largest steel manufacturers, to see if they can get their ‘super-steel’ out into the production line. 

Related news & editorials

  1. 03.08.2021
    03.08.2021
    by      In
    For a fully automatic hitch feed, single mitre band saw; a great option is the Metalmaster EB-330FAS from Hafco, designed for repetitive cutting of small to medium sized sections – in single or in pack forms.
    The EB-330FAS NC swivel head metal cutting band saw features an automatic hitch feed with... Read More
  2. 02.08.2021
    02.08.2021
    by      In
    NHP is set to be the new home of Stanilite® emergency lighting and monitoring systems throughout Australia, commencing 1st September 2021.
    The appointment of NHP as the sole distributor for Stanilite® provides for a long term, secure distribution of the product range and position Stanilite® as a... Read More
  3. 02.08.2021
    02.08.2021
    by      In
    The pandemic has underpinned a turbulent period for many Australian businesses, including manufacturers.
    The extended lockdown in NSW presents a fresh hurdle for businesses in the state. However, beyond this disruption, there are encouraging signs for manufacturers.
    At the time of writing, the... Read More
  4. 29.07.2021
    29.07.2021
    by      In
    Epson and subsidiary Epson X Investment Corporation are together investing in SiLC Technologies, a start-up developing on-chip LiDAR (Light Detection and Ranging) modules to measure distance to surrounding objects and their speed.
    The investment is occurring via the EP-GB Investment Limited... Read More
Products
Suppliers