none

SCIENTISTS CLOSE TO DEVELOPING ‘PERFECT’ RECHARGEABLE BATTERY

07-09-2015
by 
in 

US researchers are working with Samsung to develop a new rechargeable super battery.

The battery can be sustained through "hundreds of thousands" of charge cycles, and has up to 30 percent more energy density – a measure of energy per unit volume – than today’s batteries.

The key was to understand how to use a solid electrolyte in their new batteries, instead of relying on the liquid electrolyte that's used in today's rechargeable lithium-ion batteries.

Not only can their solid-state electrolytes support a greater lifespan for the battery while also boosting the amount of power it can store, it’s also safer than its liquid counterpart, which has been known to overheat and sometimes explode. 

The lithium-ion rechargeable batteries that power our smartphones, laptops, e-cigarettes, and hybrid cars all run on a liquid solvent that’s responsible for transferring charged particles from one electrode to the other during charging and discharging cycles.

The problem is that this process can cause the liquid to overheat and combust, causing potentially dangerous situations such as when Boeing’s entire fleet of 787 Dreamliner jets were temporarily grounded in 2013 because electrolyte had leaked from lithium ion batteries onto the interior of one plane’s fuselage.

Solid-state electrolyte, however, has no such complications.

"You could throw it against the wall, drive a nail through it – there’s nothing there to burn," one of the team, Gerbrand Ceder from the Massachusetts Institute of Technology (MIT), said in a recent media release.

He says it creates "almost a perfect battery, solving most of the remaining issues" in battery lifetime, safety, and cost, with "virtually no degradation reactions left". This means it will last through more charging cycles than you’re ever likely to need. 

While Cedar’s team isn’t the first to pursue the solid-state electrolyte, it’s the first to figure out how to make it work in a battery that’s powerful enough to not only challenge today’s technology, but overtake it. "There was a view that solids cannot conduct fast enough," he says. "That paradigm has been overthrown."

The researchers used a class of materials known as superionic lithium-ion conductors – compounds of lithium, germanium, phosphorus, and sulphur – to produce the electrolyte, and report in Nature Materials that they conduct the charged particles fast enough to be used in a commercial battery, and can operate at much colder temperatures than conventional lithium-ion batteries: up to –28°C. 

Hopefully by partnering with tech giant Samsung, the team will have the help it needs to put this kind of technology on the market in coming years.

Related news & editorials

  1. 16.08.2018
    16.08.2018
    by      In
    Following extensive growth of the business, Beacon Solar (a division of Beacon Lighting Group) has changed its business (trading) name to Beacon Energy Solutions.
    Beacon Solar has been in the energy efficiency/solar market for more than 10 years, with the business initially offering residential... Read More
  2. 15.08.2018
    15.08.2018
    by      In
    BHP’s new $4.8 billion South Flank iron ore mine in the Pilbara is expected to create about 2500 jobs during construction and 600 ongoing roles. But local fabricators are quire rightly up in arms about the company’s decision to award the contract for 20,000 tonnes of structural steel work to... Read More
  3. 14.08.2018
    14.08.2018
    by      In
    The former Trade Commissioner of Denmark to Australia and New Zealand, Michael T Hansen has been named General Manager of Nilfisk in Australia.
    Originally from Denmark, Hansen has more than 25 years of experience in business development and sales.
    Over the last 9 years as Trade Commissioner, Hansen... Read More
  4. 14.08.2018
    14.08.2018
    by      In
    World-renowned physicist Dr Cathy Foley has been named CSIRO Chief Scientist with a brief to help champion science, its impact and contribution to the world. Dr Foley is best known for her work developing superconducting devices and systems that have assisted in unearthing over $6 billion in... Read More