NUM has launched an innovative new CNC axis sharing facility that will enable designers to create machine tools of unprecedented versatility and productivity.

It provides a very flexible and efficient means of controlling a high number of functionally interrelated groups of motion axes, by using advanced dynamic resource allocation techniques to share control across multiple CNC kernels.

Typical applications include multi-station production centres and rotary transfer machines with complex multi-role axis control requirements.

The new axis sharing facility further extends the flexibility of NUM’s high-end Flexium+ 68 CNC architecture by allowing the control of up to 32 servo drives to be timeshared by any of the CNC kernels in the system.

Until now, it was only possible to share control of axes across the eight CNC channels of each individual Flexium+ 68 CNC kernel in a system.

While this is more than adequate for most applications, some of the latest generation production machining centres and rotary transfer machines have a high number of stations, each typically comprising a multi-axis head (using the B and C axes) that is shared by several separate machining units in each station. Each machining unit is best served by having its own dedicated CNC channel, with control of the shared multi-axis heads being passed from one channel to another as the machine cycle progresses.

For example, a transfer machine with a main rotary table that has 12 stations, each comprising a dual-axis head that is shared with three machining units per station, would require a 36-channel CNC capability – one per machining unit. Each of these channels would need to control two shared axes, three local (or ‘fixed’) axes, and one or more spindles. All five axes of each machining unit must be fully interpolated, and the channel allocation of the two shared axes needs to change every time the rotary table indexes. This can now be achieved by using five Flexium+ 68 CNC kernels and axis sharing.

Each individual Flexium+ 68 CNC kernel accommodates any combination of interpolated axes or spindles – up to a combined total of 32 – and supports up to eight CNC channels.

At any one time, each channel can control any of these axes or spindles and can either run its own part program asynchronously and operate autonomously (much as if it had its own dedicated CNC kernel), or it can be synchronised with any of the other seven channels. Control of the axes and spindles can be passed from one channel to another on-the-fly, to maximize use of hardware resources.

By using multiple CNC kernels and the new axis sharing facility, machine designers can now implement control schemes for virtually any type of machine tool, regardless of its complexity. The only system requirement is that all shared servo drives must be physically connected to the first CNC kernel in the system. NUM’s Flexium+ 68 CNC architecture is inherently scaleable and suitable for systems with more than 200 interpolated axes and spindles, and more than 50 CNC channels.

NUM’s market-leading Flexium+ CNC platform offers a choice of three configurations of CNC kernel, enabling machine designers to create cost- and performance-optimised control systems for a wide range of automation. In addition to the high end Flexium+ 68, the product series includes two configurations for less demanding applications.

Flexium+ 6 has a single CNC channel, can control four interpolated axes and a spindle, and is designed for machines of low to medium complexity.

Flexium+ 8 is designed for more complex applications; it provides two CNC channels, either of which can control up to five interpolated axes, or four interpolated axes and a spindle.

The Flexium+ platform is backed by powerful software. All CNC, servo drive, I/O, automation PLC and safety PLC functions are programmed using a single unified toolset. A fully customisable HMI allows users to add value to their machines, through improved ergonomics and touch-sensitive controls.

NUM’s application support software covers a broad range of machining functions, including part grinding, tool grinding, turning, milling, gear hobbing, shaping and finishing, as well as water-jet, laser and plasma cutting.


Related news & editorials

  1. 16.03.2018
    by      In
    The Omron S8VK-S series is billed as one of the world’s most compact DIN rail power supplies, and so is ideal for smaller control panels. The compact body size enables side-by-side mounting, which enhances design flexibility and reduces installation area by 30% compared with previous Omron power... Read More
  2. 16.03.2018
    by      In
    Rittal Australia has confirmed its national distribution partnership with APS Industrial, the newly formed specialist electrical industrial and automation equipment distributor.
    APS Industrial includes the existing businesses of Ramelec and HiTech – two well established Australian distributors,... Read More
  3. 15.03.2018
    by      In
    At just 6mm wide by 106mm high, the PTCB electronic circuit breaker from Phoenix Contact provides space saving circuit protection.
    The smart device protects 24V DC loads against overloads and short circuits. It can be used as a stand-alone circuit breaker or combined with the company’s Clipline DIN... Read More
  4. 15.03.2018
    by      In
    The Yawei Nisshinbo HPE Series from Applied Machinery is the latest in servo-driven Turret Punch Presses, providing high-end performance and power savings. 
    A technology partnership between Yawei and Nisshinbo to produce these CNC turret punch presses has been a massive success.
    Using German made... Read More