none

NEW GOLDEN NANOGRID COULD PROVIDE BETTER TOUCHSCREENS

17-01-2016
by 
in 

A new touchscreen technology has the potential to improve display transparency and sensitivity: developed by researchers in Switzerland, a specialised microscopic 3D grid of new nano-sized, gold and silver materials shows strong promise. If it can be made to work commercially, the research could end up influencing future generations of smartphones, tablets, and wearables.

The new printing technique is called Nanodrip, and it uses a system similar to those in household inkjet printers to push out grids of electrohydrodynamic ink (ink that can be electrically charged). These nanowalls of electrodes are made with gold or silver rather than the more traditional indium tin oxide, to substantially improve the overall conductivity of the material while also making it more transparent. 

The addition of the third dimension and the application of the 3D printing technique are crucial: gold and silver are not transparent, but by building up grids of nanowalls that are 80-500 nanometres thick, the team from the ETH Zurich University has produced a material with the required level of conductive performance and transparency. 

"If you want to achieve both high conductivity and transparency in wires made from these metals, you have a conflict of objectives," said project leader Dimos Poulikakos. "As the cross-sectional area of gold and silver wires grows, the conductivity increases, but the grid's transparency decreases."

The droplets produced by the Nanodrip process are about 10 times smaller than the aperture itself, pushing out microscopic metal nanoparticles in a solvent mixture. As the solvent evaporates, the three-dimensional gold or silver structure remains. By balancing the composition of the metallic ink with the charge of the electromagnetic field used to draw it out of the printing device, the researchers were able to create incredibly small droplets.

"Imagine a water drop hanging from a tap that is turned off. And now imagine that another tiny droplet is hanging from this drop - we are only printing the tiny droplet," said Poulikakos.

As you might expect, the next challenge is in proving that the process can be upscaled and applied on an industrial level. But the team is confident that the Nanodrip technology will eventually work out to be more cost-effective than current touchscreen manufacturing processes. It could also be useful in the production of solar cells and other scenarios where transparent electrodes are required. 

The research has been published in the journal Advanced Functional Materials.

Related news & editorials

  1. 19.11.2018
    19.11.2018
    by      In
    Dematic iQ InSights is a cloud-based asset performance management system that brings together order fulfilment and facility lifecycle management data to provide intelligent insights into warehouse logistics effectiveness.
    The software integrates facility-wide intelligence across warehouse and... Read More
  2. 16.11.2018
    16.11.2018
    by      In
    Just in time for the warmer weather, Coates Hire has expanded its alliance with Fanquip with the recent purchase of more Mobile Mancooler units to add to its existing fleet.
    The Australian-made Mobile Mancooler features a heavy pipe frame, heavy-duty lifting hook and large diameter wheels for easy... Read More
  3. 16.11.2018
    16.11.2018
    by      In
    Automated guided vehicles (AGVs) are increasingly used in production, warehousing and order picking. Every one must find its way to an exact position quickly, safely and cost-effectively. There have been various technologies in this area, each with its own specific properties, and with each further... Read More
  4. 15.11.2018
    15.11.2018
    by      In
    With so many different welding helmet brands and options available, selecting the welding mask that’s perfect for your specific needs has never been more difficult. But now AWS has made it easy.
    Rather than having to sort through mountains of data, the AWS Welding Helmet Selector Tool matches your... Read More