none

MACRO LEAPS IN TRANSISTOR MICROTECH

05-09-2017
by 
in 

In partnership with Griffith University, BluGlass Ltd is leading a two-year project to develop high-performance normally-off gallium nitride (GaN) high-electron-mobility transistors (HEMTs) that promise a positive and stable threshold voltage, low on-resistance, and high breakdown field.

The project (powered a $600,000 cash investment, including a $300,000 grant from the not-for-profit, independent Innovative Manufacturing Cooperative Research Centre (IMCRC)) aims to combines BluGlass’ low-temperature remote-plasma chemical vapor deposition (RPCVD) technology and Griffith Microtechnology Facility's (QMF) atomically smooth silicon carbide on large silicon (SiC-on-Si) wafers.

“Electronics manufacturers face high cost barriers for higher-performing materials,” says BluGlass’ managing director Giles Bourne. “The research project aims to overcome those industry challenges,” he adds.

“Silicon is incredibly cheap and traditionally difficult to displace despite the performance advantages of other materials such as GaN… RPCVD operates at temperatures hundreds of degrees cooler than the current industry incumbent technology. This offers electronics manufacturers many advantages, including higher-performance, lower-cost throughputs and the ability to deposit on lower-cost substrate such as silicon.” The ability to produce fail-safe, normally-off devices will be critical for widespread adoption of GaN transistors, he states.

“Our unique low-temperature deposition of the p-GaN gate is required to enable high-performance normally-off devices, and this has significant commercial implications, not only for BluGlass but for the Australian power electronics industry,” Bourne continues.

The atomically smooth SiC on large Si wafers of the Queensland Microtechnology Facility (QMF) – part of Griffith University’s Queensland Micro- and Nanotechnology Centre – provides a chemical barrier and template for the epitaxial growth of nitride layers that helps to address the challenges of defectivity and long-term device reliability. The partnership “highlights the university’s commitment to advancing technology through industry collaborations,” says professor Ned Pankhurst, Griffith University’s senior deputy vice chancellor.

Throughout the project, BluGlass will work closely with Griffith University’s QMF and access their process and test equipment, infrastructure, device knowledge and resources to develop and optimize HEMT devices.

The project has the potential to create high-value IP and foundry technologies that could lead to the generation of a local semiconductor wafer economy, reckons IMCRC managing director & CEO David Chuter. “Addressing industry challenges and combining key enabling technologies, we believe this project can boost the commercial value of the sector, and create new opportunities, in Australia and into global value chains,” he adds.

Related news & editorials

  1. 16.11.2018
    16.11.2018
    by      In
    Just in time for the warmer weather, Coates Hire has expanded its alliance with Fanquip with the recent purchase of more Mobile Mancooler units to add to its existing fleet.
    The Australian-made Mobile Mancooler features a heavy pipe frame, heavy-duty lifting hook and large diameter wheels for easy... Read More
  2. 16.11.2018
    16.11.2018
    by      In
    Automated guided vehicles (AGVs) are increasingly used in production, warehousing and order picking. Every one must find its way to an exact position quickly, safely and cost-effectively. There have been various technologies in this area, each with its own specific properties, and with each further... Read More
  3. 15.11.2018
    15.11.2018
    by      In
    With so many different welding helmet brands and options available, selecting the welding mask that’s perfect for your specific needs has never been more difficult. But now AWS has made it easy.
    Rather than having to sort through mountains of data, the AWS Welding Helmet Selector Tool matches your... Read More
  4. 14.11.2018
    14.11.2018
    by      In
    ABB has launched the world’s first safety PLC with integrated condition monitoring, in order to improve overall functional safety of various applications to global safety standards and reduce manual inspection and maintenance.
    Failsafe condition monitoring complements standard noncritical... Read More