Arrow
none

MACRO LEAPS IN TRANSISTOR MICROTECH

05-09-2017
by 
in 

In partnership with Griffith University, BluGlass Ltd is leading a two-year project to develop high-performance normally-off gallium nitride (GaN) high-electron-mobility transistors (HEMTs) that promise a positive and stable threshold voltage, low on-resistance, and high breakdown field.

The project (powered a $600,000 cash investment, including a $300,000 grant from the not-for-profit, independent Innovative Manufacturing Cooperative Research Centre (IMCRC)) aims to combines BluGlass’ low-temperature remote-plasma chemical vapor deposition (RPCVD) technology and Griffith Microtechnology Facility's (QMF) atomically smooth silicon carbide on large silicon (SiC-on-Si) wafers.

“Electronics manufacturers face high cost barriers for higher-performing materials,” says BluGlass’ managing director Giles Bourne. “The research project aims to overcome those industry challenges,” he adds.

“Silicon is incredibly cheap and traditionally difficult to displace despite the performance advantages of other materials such as GaN… RPCVD operates at temperatures hundreds of degrees cooler than the current industry incumbent technology. This offers electronics manufacturers many advantages, including higher-performance, lower-cost throughputs and the ability to deposit on lower-cost substrate such as silicon.” The ability to produce fail-safe, normally-off devices will be critical for widespread adoption of GaN transistors, he states.

“Our unique low-temperature deposition of the p-GaN gate is required to enable high-performance normally-off devices, and this has significant commercial implications, not only for BluGlass but for the Australian power electronics industry,” Bourne continues.

The atomically smooth SiC on large Si wafers of the Queensland Microtechnology Facility (QMF) – part of Griffith University’s Queensland Micro- and Nanotechnology Centre – provides a chemical barrier and template for the epitaxial growth of nitride layers that helps to address the challenges of defectivity and long-term device reliability. The partnership “highlights the university’s commitment to advancing technology through industry collaborations,” says professor Ned Pankhurst, Griffith University’s senior deputy vice chancellor.

Throughout the project, BluGlass will work closely with Griffith University’s QMF and access their process and test equipment, infrastructure, device knowledge and resources to develop and optimize HEMT devices.

The project has the potential to create high-value IP and foundry technologies that could lead to the generation of a local semiconductor wafer economy, reckons IMCRC managing director & CEO David Chuter. “Addressing industry challenges and combining key enabling technologies, we believe this project can boost the commercial value of the sector, and create new opportunities, in Australia and into global value chains,” he adds.

Related news & editorials

  1. 24.01.2019
    24.01.2019
    by      In
    Accurate temperature and humidity controls are imperative throughout every stage of mushroom growth to ensure high-quality crops. Mushrooms are 90% water and have no skin to act as a barrier between their surface and the air. They will dry out and shrink quickly if humidity levels are too low, but... Read More
  2. 24.01.2019
    24.01.2019
    by      In
    CRC Industries has expanded its Greenlight food-safe range with the introduction of the NSF A1-rated CRC food-grade bio-degreaser, an extra-heavy-duty cleaner formulated to safely penetrate and dissolve tough grease, oil and contaminants for easy removal.
    CRC Australia's Managing Director Shona... Read More
  3. 24.01.2019
    24.01.2019
    by      In
    Gibson Instrumentation Services, an enterprising Queensland contracting company, has developed a safer, faster and more cost-efficient way to assemble heavy Abon coal feeder chain links, using compact and powerful Enerpac hydraulic power instead of strenuous manual labour.
    Gibson manager Paul... Read More
  4. 24.01.2019
    24.01.2019
    by      In
    Connecting remote equipment to industrial networks is often an essential part of a manufacturing or logistics operation. And while there are many hardware options capable of providing this remote connectivity, security can be a serious concern with valuable data transmitted over open channels.
    One... Read More
Arrow