none

INVISIBLE WIRES TO BOOST SOLAR CELL EFFICIENCY

30-11-2015
by 
in 

The efficiency of solar energy is seeming to be getting better and better, with the race for the most effective solar cell becoming more and more competitive.

It comes as no surprise that researcher in the US have unlocked how to engineer a solar cell that absorbs more sunlight than before by using tiny wires that are in top on the cells.

Normal solar cells work as panels with a grid of wires over the top. These wires conduct the electrical charge that is then absorbed by the cell.

The problem with the conventional solar cells is that they obstruct the cells ability to absorb sunlight by 5-10%

“Using nanotechnology, we have developed a novel way to make the upper metal contact nearly invisible to incoming light,” said Vijay Narasimhan, one of the researchers from Stanford University.

“Our new technique could significantly improve the efficiency and thereby lower the cost of solar cells.”

The solution to the conventional wires is 16-nanmetres thick films of gold that can be placed on flat sheets of silicon.  

“We immersed the silicon and the perforated gold film together in a solution of hydrofluoric acid and hydrogen peroxide,” said Thomas Hymel, a team member.

“The gold film immediately began sinking into the silicon substrate, and silicon nanopillars began popping up through the holes in the film.”

The nanopillars come as a huge advantage as they are able to grow and they reach through the reflective metal surface, with the energy able to funnel down to the silicon underneath.

“In our best design, nearly two-thirds of the surface can be covered with metal, yet the reflection loss is only 3 percent,” said Narasimhan.

“Having that much metal could increase conductivity and make the cell far more efficient at converting light to electricity.”

The reserachers are expecting that their nano-wires could boost efficiency from 20 to 22%, with hope that they can test out their design on a working cell.

“We call them ‘covert contacts,’ because the metal hides in the shadows of the silicon nanopillars,” said graduate student Ruby Lai.

“It doesn’t matter what type of metal you put in there. It will be nearly invisible to incoming light.”

Related news & editorials

  1. 26.04.2018
    26.04.2018
    by      In
    Work to transform the Commonwealth Games Village to form part of a 200-hectare Gold Coast health and knowledge precinct has begun. 
    The project is spearheaded by the City of Gold Coast in collaboration with the Queensland Government, Griffith University and Gold Coast Health is part of a $550... Read More
  2. 26.04.2018
    26.04.2018
    by      In
    It's all about the jobs in Wodonga, where 15 new businesses will benefit from the regional clusters investment scheme, set to grant $5 million to businesses over two years. 
    Australian Industry Group regional manager Tim Farrah said that the initiative would support businesses in regional areas,... Read More
  3. 26.04.2018
    26.04.2018
    by      In
    The Chinese government has doubled down on its import restrictions for recycleable and waste material, building on its previous bans to include more kinds of items. 
    In 2017, China placed an import ban on 24 kinds of solid waste, which it had previously imported from dozens of other countries and... Read More
  4. 26.04.2018
    26.04.2018
    by      In
    A $1.5 million Local Industry Fund for Transition grant is helping Holden Special Vehicles embark on a $12 million project that will create at least fifty new jobs, all suitable for ex-auto workers.
    As part of its project, the company has established a purpose-built facility and purchased new high-... Read More