none
none

INCREASE PRODUCTIVITY WITH KENNAMETAL’S NEW LINE-BORING SOLUTION

05-03-2015
by 
in 

Kennametal´s new asymmetric line-boring solution increases machining robustness, process speeds, and bore quality, and reduces tool maintenance and handling.

Precision boring is a vital process in manufacturing many critical components.

The accuracy and finish of a multi-journal crank bore in an engine block relates directly to power and fuel efficiency, and the time it takes relates directly to the engine company´s profits.

Precision bores in numerous engineered components are essential to critical performance metrics.

Such bores must meet critical tolerances – but the downside is that precision boring can be costly and time-consuming, with a small mistake or error resulting in the scrapping of expensive parts.

The response from Kennametal is a geometric and asymmetric line boring bar solution.

By definition, boring, as opposed to drilling, is a machining process in which internal diameters are made in true relation to the spindle centerline.

This process is most commonly performed with the workpiece held stationary and the cutting tool both rotating and advancing into the workpiece, although boring is also done with the cutting tool and the workpiece being adjustable.

Common applications for boring include the enlarging or finishing of cored, pierced, or drilled holes and contoured internal surfaces. Related operations sometimes performed simultaneously with boring include turning, facing, chamfering, grooving, and threading.

How it´s done

Envision a small engine block with five in-line journals requiring crank bores. Conventional thinking for a multi-journal finishing assignment, for example, involves a multi-blade guidepad reamer with the following suggested process (here designated as Option 1.0):

·       A pilot reamer finishes the first journal

·       The multi-blade reamer is fed in and semi- and final-finishes journals 2 through 5.

·       The reamer is then retracted.

The advantage of such a process is that it lends itself to use on CNC horizontal or multi-axis machining centres and does not require a dedicated boring machine with dedicated fixtures.

However, depending on the size of the workpiece, the machine tool must be of sufficient rigidity or quality can fall off dramatically.

Also, feed-in and feed-out of the reaming tool over finished bores must be done slowly and precisely or retraction marks and/or damage to the cutting edges will occur.

Another general option for machining this kind of bore is line boring (Option 2.0). The basic issue to be solved at this option is how can the cutting blades and the tool´s guide pads pass through unfinished journals with smaller hole diameters?

CNC machine tool builders have responded to this quandary with using conventional line boring bars and “counter-bearing” capabilities on their equipment. The process looks like the following:

·       The workpiece area of the machine tool lifts the cylinder block up

·       The line boring bar is fed through the component into a bearing at the opposite end

·       The cylinder block is adjusted down and clamped

·       Crank bores are semi- and final-finished

·       The cylinder block is lifted up and the boring bar retracted.

 

The process speeds up feed-in and feed-out, and because the tool is supported on both ends; the geometric quality of the finished bore is improved compared to reaming option 1.0.

On the downside, lift functions require special fixturing and CNC control, and the required counter-bearing on the fixture makes any additional back-side machining impossible.

Multi-axis machine tools with tilting worktables and/or tilting spindles together with more evolved boring bars contribute to Line Boring Option 2.1 with expandable guide pads.

The disadvantages are that the complex internal mechanics of this type of boring bar are costly and can be difficult to handle.

Insufficient lubrication use can damage sensitive internal mechanics, and if not monitored exactly, the tool can jam or hook in the workpiece and cause damage to the machine, fixture, tool, and part.

An asymmetric solution

In collaboration with a major automotive manufacturer’s engine block operations, Kennametal engineering staff has advanced the boring function with Option3.0, asymmetric line boring.

This is a geometric leap forward that accentuates the advantages of reaming and line boring while virtually eliminating the disadvantages of both.

As with most advanced solutions, the principle at the foundation is quite basic.

Normal guide diameters are of full material or build of three or more guide pads, providing no degree of freedom from the bore wall while feeding in and out.

The Kennametal solution supports on guide pads in a setup similar to a typical guide pad reamer, but the guide pad, normally located 180° to the cutting edge, was rotated so the resulting design provides freedom to enter and exit the guide part even passing through the raw bores.

This geometry allows feeding the bar through raw bores on an eccentric path.

The process, then, looks like this:

·       A pilot reamer is fed in and finishes journal 5

·       The component (or machine table) gets rotated 180 degrees

·       The asymmetric boring bar is fed in off-center using the machining centre’s X-Y axis

·       The tool is moved to the center and finishes journals 1 through 4 simultaneously

·       The tool is retracted off-center with fast feed out.

Such asymmetric line boring retains all the advantages of previous line boring efforts -- high-quality precision bores, support on both ends of the tool, while no expensive lift functions, obstructive counter bearings or critical mechanisms inside the tool are needed.

It also adds the fact that complete feed-in and feed-out moves can be done at increased feed rates on conventional machining centers, adding efficiency to the process.

The indexable inserts offered with this eccentric boring bar solution are advanced.

High-precision RI8 inserts have eight cutting edges with pre-defined back taper, which allows for high feed rates. Diameter can be adjusted to the precision of 1 micron. The high clamping force provided by the conical clamp screw avoids any settling effects.

Both inserts and the asymmetric boring bar are designed so the inserts clamp directly into the boring bar body.

This eliminates the need for cartridges and the additional tolerances and space they require.

In short, this asymmetric line-boring solution increases machining robustness, process speeds, and reduces tool maintenance and handling, all while being compatible with CNC machining centers – a solution any manufacturer in search of process improvements will find anything but boring.

For more information visit: www.kennametal.com.

Related news & editorials

  1. 23.02.2018
    23.02.2018
    by      In
    The optoNCDT 1750 laser triangulation sensor is now available from Bestech Australia with extended measurement ranges of 500 and 750mm. This is a major addition to the existing 2-200mm measurement range, offering superior performance to its predecessor, the ILD1700.
    The 1750 laser triangulation... Read More
  2. Silent DieselDIESEL-POWERED PRESSURE CLEANER IS A QUIET ACHIEVER  The latest model of high-pressure water cleaner from Spitwater uses a “silent” diesel engine to provide industrial-grade cleaning performance in applications where noise might be a problem.  Designed and built at Spitwater’s Albury manufacturing plant, the Model SW15200DES Silent Diesel delivers 15L/min hot or cold water flow at 200bar pressure in a self-contained, portable machine.   Like all Spitwater machines, the new unit is based on a th
    21.02.2018
    21.02.2018
    by      In
    The latest model of high-pressure water cleaner from Spitwater uses a “silent” diesel engine to provide industrial-grade cleaning performance in applications where noise might be a problem.
    Designed and built at Spitwater’s Albury manufacturing plant, the Model SW15200DES Silent Diesel delivers 15L... Read More
  3. 20.02.2018
    20.02.2018
    by      In
    Turck has developed a novel protocol that enables high-density networking with I/O resource constrained PLCs. The Backplane Ethernet Extension Protocol (BEEP) can be used to network up to 33 devices and link them to a PLC on a single connection using a single IP address.
    The first device in the I/O... Read More
  4. 20.02.2018
    20.02.2018
    by      In
    MTI See-Thru Insulated Traffic Doors provide a rugged low-maintenance solution to maintaining climate control between different internal temperature zones.
    The strongly built 44mm-thick traffic doors are made with a rigid PVC framework, a high-impact ABS plastic skin, internal foam insulation and a... Read More