Published 03-02-2020

FIVE STEM EDUCATION TRENDS FOR 2020

31-01-2020

According to the Australian Government, workers with an education in STEM fields are deemed to be “critically important for our current and future productivity”. It’s already allocated over $64 million in funding for early learning and school STEM initiatives, a move designed to encourage further study in these fields.

In the coming decade, we will see a change in STEM careers and, consequently, the ways in which graduates will be prepared for them will need an overhaul. Based on a US National Academy of Engineering survey of global technology leaders and scholars, STEM careers of the future will be faced with solving four “grand challenges” comprising major technology issues in the areas of sustainability, health, security, and the joy of living.

What are some of the areas that teachers, students and parents should track to help create a workforce that is ready to take on the challenges of the coming decade?

Below are five of the major trends that will affect how university students and independent learners are taught to meet the challenges of the decade ahead.

Authentic learning is bolstered by authentic assessment

We are seeing the rise of authentic assessment, with teachers moving their attention to assessing and supporting students individually as students engage in authentic learning practices.

The ability to accurately track students’ progress is helped by interactive tools and technology that increase student engagement to improve learning outcomes. Professors are starting to explore and integrate tools into their curriculum that allow them to provide students immediate feedback and automatically grade student work to help assess individual student performance.

Shift from “learning to code” to “coding to learn”

Computational thinking enables solving problems, designing systems, and understanding human behaviour analytically. Bringing computational thinking to the classroom will help create professionals who can break down large and complex problems into a series of small, manageable problems that can often be solved algorithmically. This approach enables scientists and engineers to solve extremely complex problems with large data sets effectively and efficiently.

Tools enabling global education collaboration

Over the last decade, we have seen more students learning and collaborating online using workflows and technologies that are used in industry. Looking ahead, we will continue to see a growing number of countries moving to technology and Internet-supported learning, as they shift from paper and blackboard-based teaching and learning.

Students from different geographies learning on online platforms also enable them to addressing real-world local and global problems through collaboration with peers from all over the world. By being able to engage with global communities and having access to common, cloud-based storage locations like GitHub, teachers from around the globe are now accessing, sharing and versioning code gathered from the global community to create real and effective teaching strategies and course work.

Growing demand for “bilingual” engineers = computer science + X expertise

Developments in techniques for data-informed inference and decision-making have blended artificial intelligence (AI) and data science from the fields of statistics and computer science with other domain expertise.

Academia is responding to such needs for individuals with both domain and AI expertise by creating programmes that educate “bilingual” engineers and scientists, for example, individuals in fields of chemistry and signal processing who also possess modern computing skills like AI.

Since these areas are also seeing rapid growth in industry, universities and industries are partnering to provide such “bilingual” educational opportunities. Students who are equipped with both domain and computing knowledge will have the advantage of knowing how to use such tools and techniques and, more importantly, when to and when not to apply them.

Growth of self-paced and personalised learning

For motivated independent learners, there are multiple ways to build and brush up on skills using self-paced online courses and certifications available from massive open online course providers like Coursera and EdX. In addition to building knowledge, these courses demystify AI and allow engineers to see AI as an extension of their toolkit to solve problems and be innovative.

As students, it is easy to become overwhelmed by buzzwords like AI, but instead, such courses give students opportunities to focus on how they can gain competencies in actual techniques that give them a professional edge such as data analytics and reinforcement learning.

Today, there is growing acknowledgement that we need to change the way we teach and learn if we want to improve the quality of life for the next generation.

To do this effectively, we need STEM students to be comfortable and skilful at collaborating and working within multidisciplinary environments. It has become even more imperative today to engage in lifelong learning and stay current with new concepts, systems, and approaches while in school and beyond.

To help facilitate this, we are seeing a seismic shift from traditional approaches of teaching and evaluating students’ grasp of curriculum to understanding each individual student’s readiness to use and apply tools and technology to solve real-world challenges.

In 2020 and beyond we will see industry and academia develop deeper relationships, where industry will support instructors as they teach and mentor the next generation of STEM students prepared to tackle the grand challenges that await them.

Stephane Marouani is ANZ Country Manager at MathWorks.

 

RELATED NEWS

  1. In Australia, the food and beverage sector accounts for 32% of the country’s total manufacturing turnover and is reported to be worth around $122 billion (Octet 2020). New Zealand, on the other hand, is a major food and beverage exporter, with the industry accounting for 46% of all goods and...
  2. Labour Senator Kim Carr
    When the pandemic forced the Morrison Government to accept the importance of manufacturing, we began to hear a lot about the need to build sovereign capabilities in Australian industry.
    The Government still uses that rhetoric. The problem is that it doesn’t seem to be happening.
    One of the most...
  3. Karen Andrews, Minister for Industry, Science and Technology
    We make great things in Australia and we make them well. 
    And as the Prime Minister and I have been saying, we want to continue to make great things here. 
    That belief is central to our Modern Manufacturing Strategy, and indeed all of the policy decisions we make to support our manufacturers.
    When ...