none

EGG UNBOILERS SET SIGHTS ON BETTER BATTERIES

29-01-2018
by 
in 
The Vortex Fluidic Device (pictured above) can fold proteins, slice carbon nanotubes, and facilitate a "wide range of novel chemical reactions".

The Australian researchers who successfully unboiled an egg are turning their attention to capturing the energy of graphene oxide (GO) to make a more efficient alternative to lithium-ion batteries.

The Flinders University team in South Australia has partnered with Swinburne University of Technology in Victoria, Australian Stock Exchange-listed First Graphene Ltd and manufacturer Kremford Pty Ltd.

The collaboration is set on developing a GO-powered battery, a super-capacity energy storage alternative to emerging lithium-ion battery (LIB) technology.

Graphene is the lightest, strongest, most electrically conductive material available and has been predicted to generate revolutionary new products in many industry sectors. But so far unreliable quality and poor manufacturing processes has prevented an industrial graphene market.

In 2015, Flinders University scientists were awarded an Ig Nobel Award for creating the Vortex Fluidic Device and using it to unboil an egg.

The device has also been used to accurately slice carbon nanotubes to an average length of 170 nanometres using only water, a solvent and a laser. It has also been used to process graphene to a high quality for commercial use.

VFD creator and professor of clean technology at Flinders University Professor Colin Raston said the production of GO from graphite ore with minimal waste was an important part of the collaborative project.

“This project aims to develop the manufacturing specifications for the commercial production of a graphene oxide super-capacitor with the ‘look and feel’ of a LIB but with superior performance across weight, charge rate, lifecycle and environmental footprint factors,” Professor Raston said.

The AU$3.45 million project is being supported by a $1.5 million Cooperative Research Centre Project grant through the Australian Government’s Advance Manufacturing Fund.

First Graphene will use the Flinders University technology to produce the highest-quality graphene at scale and to become a global supplier of graphene nanomaterials products.

Researchers at Swinburne’s Centre for Micro-Photonics are working on a commercially viable, chemical-free, long-lasting safe GO-based supercapacitor, which offers high performance and low-cost energy storage capabilities.

Professor Raston said there was significant global research to improve energy storage capability to support its role in the development of sustainable energy storage systems.

“For example, we’re seeing the rapid rise of LIB around the world, notably with South Australia’s significant investment in the new storage facility near Jamestown in this state,” he said.

Related news & editorials

  1. 21.05.2018
    21.05.2018
    by      In
    Queensland engineering firm Fibercon is claiming a milestone in recycling, having reused more than 50 tonnes of plastic waste.
    The plastic has been used in the company’s Emesh product, which replaces steel mesh in reinforced concrete. The technology was codeveloped with researchers from Queensland’... Read More
  2. 18.05.2018
    18.05.2018
    by      In
    The latest edition of the Methods technology and solutions e-zine from Mouser Electronics focuses on digital twinning, the latest concept for design and maintenance in Industry 4.0.
    Starting with a forward from digital twinning expert Dr Michael Grieves, Executive Director of the US Center for... Read More
  3. 17.05.2018
    17.05.2018
    by      In
    The Federal Government has released an expanded overview of its 12-year national research infrastructure investment plan, marking the “next step of the innovation and science agenda”.
    The plan, prepared jointly by Education and Industry departments, will “provide Australian researchers with access... Read More
  4. 17.05.2018
    17.05.2018
    by      In
    Victoria’s Marand has grown its customer base, securing a partnership with Rolls-Royce for construction of the MT30 gas turbine for the SEA 5000 Future Frigate project.
    Under the agreement, Marand will work with Rolls-Royce on design development, manufacture and integration of the specialised... Read More