Published 04-03-2021
| Article appears in February 2021 Issue

Automotive-grade secure authenticator enhances vehicle safety and security

01-03-2021
Maxim Integrated’s line of AEC-Q100 Grade 1 solutions for automotive systems, the DS28E40 is a parasitically-powered authenticator utilising a 1-Wire interface for simple connectivity.

In critical systems, genuine components are the safest and most reliable.

As cars become more sophisticated, safety and security risks grow as well. Designers can now enhance these elements for vehicle systems while reducing both complexity and code development by authenticating genuine components with the DS28E40 DeepCover automotive secure authenticator from Maxim Integrated Products.

As the newest addition to Maxim Integrated’s line of AEC-Q100 Grade 1 solutions for automotive systems, the DS28E40 is a parasitically-powered authenticator utilising a 1-Wire interface for simple connectivity. This authenticator IC ensures only genuine components are used for many electronic systems, such as advanced driver assistance systems (ADAS) and electric vehicle batteries.

“The parasitically-powered 1-Wire authenticator really opens up automotive endpoints that can be secured and properly authenticated by adding just one chip,” said Michael Haight, director, Embedded Security at Maxim Integrated.

“With the ground plus single contact for power and communication, even a passive automotive component that doesn’t otherwise have electronics could be connected to an engine control unit and authenticated.”

Automotive manufacturers use authentication in two ways: to ensure only OEM-certified components are safely connected to vehicle systems and to reduce the growing threat of malware attacks.

However, most full-blown secure microcontrollers have a relatively big footprint and require software development teams to create, rigorously test and debug their code. Here are the problems with current microcontroller-based solutions: The bigger the code base is, the higher the risk of bugs or malware adversely affecting performance. Plus, I²C and SPI interface automotive security solutions available on the market may require many interface pins—as many as five or six, including dedicated power and reset lines. More pins can lead to higher costs and more reliability issues. 

The DS28E40 DeepCover authenticator is a fixed-function, 1-Wire solution that meets the AEC-Q100 standard Grade 1 performance standards and replaces microcontroller-based approaches. The fixed-function device gives OEMs a targeted algorithm and command toolset to meet their specific security needs, while reducing both system design complexity and associated code development efforts. Its public/private key asymmetric ECDSA (ECC-P256 curve) and other key authentication algorithms are built into the IC, allowing OEMs to skip development of proprietary device-level code.

This and other algorithms in the authenticator IC provide the strongest defense against unauthorized components that could compromise performance, safety and data integrity.

The 1-Wire interface combines power and communication on a single pin and thus requires only two interconnects including the ground pin.

Fewer interconnect pins reduce cost and further improves reliability by enabling smaller cable harnesses to connect an ECU to a remote endpoint.

The DS28E40 comes in a compact, 4mm-x-3mm TDFN package and operates over the -40-degree to +125-degree Celsius temperature range.

RELATED NEWS

  1. EXAIR has added a new feature to its range of Line Vac Air Operated Conveyors, which address the variety of unique problems that manufacturers face.
    The Line Vac Air Operated Conveyors offer an efficient way of converting ordinary pipe, hose or tubes into powerful in-line conveyors, which can be...
  2. TURCK has expanded its HF portfolio with three new IO-Link read/write devices, offering improved performance with password protection and condition monitoring. 
    TURCK’s new RFID read/write devices with IO-Link come in three designs: M18 and M30 threaded barrel options; and a Q40 rectangular design...
  3. The importance of greasing bearings when they are moving is often not understood or is overlooked. There is a possibility that the importance is understood but is not done due to practical constraints such as moving machinery and OH&S regulations.
    Grease introduced into a stationary bearing...