none

3D PRINTING WITH LIVING CELLS MADE A POSSIBILITY

17-02-2016
by 
in 

In a new leap for the 3D printing, scientists have used a 3D printed life sized body parts and tissues using cells as the material.

The new body parts are large enough to be used as replacements and are made to fit each individals needs.

"It can fabricate stable, human-scale tissue of any shape. With further development, this technology could potentially be used to print living tissue and organ structures for surgical implantation," one of the researchers behind the technology, Anthony Atala from the Wake Forest Institute for Regenerative Medicine, told The Guardian.

Before this, bioprinters have been utilised to print more simplistic replicas of organs, so scientists and researcher no longer need to test on the real thng. This new technology will allow scientists to print something effective enough to be used as a transplant.

One of problems faced is using cells for printing without killing the cells and keeping them alive long enough to complete the entire process, and how to create an accurate structure that can live inside the human body.

"Cells simply cannot survive without a blood vessel supply that’s smaller than 200 microns [around 0.1 cm], which is extremely small," Atala told Gizmodo,

The team of scientists, ad Atala overcame this by combining the cells and a special form of gel and plastic that are designed to act as biological tissue.

This material allows the 3D printed structure to be implanted, then once in, the gels fades and then leaves the biological material.

"At the same time, the cells secrete a supporting matrix that helps maintain the implant's shape," Arielle Duhaime-Ross explains at The Verge.

"By the end of this process, the cells have reorganised themselves in a self-sufficient manner that negates the need for supporting materials."

The researchers have yet to implement the technology on humans but have made ears, bones, and muscle structures, and attached them to mice.

Only two weeks after the mice had been implanted with the 3D tissue the nerve cells started growing and in a five month trial, skull fragments implanted had formed new bone tissue with a blood supply,

 As Adam Feinberg, a biomedical engineer at Carnegie Mellon University who wasn't involved in the study, told The Verge:

"You’re going to see a lot of exciting advances over the next year or two that will push this from the realm of science fiction into something that’s close to impacting patients."

 

Related news & editorials

  1. 25.09.2018
    25.09.2018
    by      In
    Energy Efficiency Expo is a new annual trade exhibition and conference dedicated to energy productivity and affordability. Organised by Reed Exhibitions Australia in partnership with the Energy Efficiency Council, the new event will be held for the first time in October 2019 at the Melbourne... Read More
  2. 25.09.2018
    25.09.2018
    by      In
    This week has seen the opening of a unique facility at Deakin University dedicated to advanced metal development and 3D roll forming. The $1.5 million IFM Flexible Forming Facility has been set up as part of Deakin’s Institute for Frontier Materials (IFM), supported a $280,000 grant from the... Read More
  3. 24.09.2018
    24.09.2018
    by      In
    CSIRO is shooting for the Moon this week at the 18th Australian Space Research Conference on the Gold Coast with the launch of an industry roadmap designed to encourage the development of the technological expertise to help to establish a human base on the Moon.
    The report, “Space: A roadmap for... Read More
  4. 20.09.2018
    20.09.2018
    by      In
    Control Logic has set its sights on expansion, with a new leadership team incorporating key roles in products and marketing, sales and development, and operations and services. The move aims to increase the company’s skill set and focus to drive innovation and expand the company’s expertise and... Read More