none
none

INVISIBLE WIRES TO BOOST SOLAR CELL EFFICIENCY

30-11-2015
by 
in 

The efficiency of solar energy is seeming to be getting better and better, with the race for the most effective solar cell becoming more and more competitive.

It comes as no surprise that researcher in the US have unlocked how to engineer a solar cell that absorbs more sunlight than before by using tiny wires that are in top on the cells.

Normal solar cells work as panels with a grid of wires over the top. These wires conduct the electrical charge that is then absorbed by the cell.

The problem with the conventional solar cells is that they obstruct the cells ability to absorb sunlight by 5-10%

“Using nanotechnology, we have developed a novel way to make the upper metal contact nearly invisible to incoming light,” said Vijay Narasimhan, one of the researchers from Stanford University.

“Our new technique could significantly improve the efficiency and thereby lower the cost of solar cells.”

The solution to the conventional wires is 16-nanmetres thick films of gold that can be placed on flat sheets of silicon.  

“We immersed the silicon and the perforated gold film together in a solution of hydrofluoric acid and hydrogen peroxide,” said Thomas Hymel, a team member.

“The gold film immediately began sinking into the silicon substrate, and silicon nanopillars began popping up through the holes in the film.”

The nanopillars come as a huge advantage as they are able to grow and they reach through the reflective metal surface, with the energy able to funnel down to the silicon underneath.

“In our best design, nearly two-thirds of the surface can be covered with metal, yet the reflection loss is only 3 percent,” said Narasimhan.

“Having that much metal could increase conductivity and make the cell far more efficient at converting light to electricity.”

The reserachers are expecting that their nano-wires could boost efficiency from 20 to 22%, with hope that they can test out their design on a working cell.

“We call them ‘covert contacts,’ because the metal hides in the shadows of the silicon nanopillars,” said graduate student Ruby Lai.

“It doesn’t matter what type of metal you put in there. It will be nearly invisible to incoming light.”

Related news & editorials

  1. 16.11.2017
    16.11.2017
    by      In
    Beacon Lighting is well on the way to substantially reducing its carbon footprint as its partner Upstream Energy nears completion of a national solar project spanning more than 70 stores and saving millions of kilograms of carbon emissions each year.
    Upstream Energy developed a proposal to deliver... Read More
  2. 16.11.2017
    16.11.2017
    by      In
    The Brisbane company Nordon Cylinders is well aware that it has a key role in keeping the wheels of industry turning. However, its customers at home and abroad require hydraulic cylinders from tiny to humungous, and they don’t always want them today – sometimes, they want them yesterday.
    At its... Read More
  3. 16.11.2017
    16.11.2017
    by      In
    Wiivv Wearables is on a mission to make body-perfect gear accessible to the masses. Its flagship product, a custom shoe insole, has proven to be a good first step and uses a combination of customer-collected smartphone data and 3D printing to feed its design and manufacturing process.
    According to... Read More
  4. 14.11.2017
    14.11.2017
    by      In
    Good use is being made of the now-closed Holden manufacturing plant in South Australia, as a series of generators has been installed in to supplement the state's power grid during the incoming high-demand summer period.
    The diesel generators have been set up at the former Holden manufacturing plant... Read More