none
none

CACTUS INSPIRED SKIN GIVES ELECTRIC CARS A SPIKE

29-04-2016
by 
in 
Cactus inspired skin

Inspired by the humble cactus, a new type of membrane has the potential to significantly boost the performance of fuel cells and transform the electric vehicle industry.

The membrane, developed by scientists from CSIRO and Hanyang University in Korea, was described today in the journal Nature.

The paper shows that in hot conditions the membrane, which features a water repellent skin, can improve the efficiency of fuel cells by a factor of four.

According to CSIRO researcher and co-author Dr Aaron Thornton, the skin works in a similar way to a cactus plant, which thrives by retaining water in harsh and arid environments.

“Fuel cells, like the ones used in electric vehicles, generate energy by mixing together simple gases, like hydrogen and oxygen. However, in order to maintain performance, proton exchange membrane fuel cells – or PEMFCs – need to stay constantly hydrated,” Dr Thornton said.

“At the moment this is achieved by placing the cells alongside a radiator, water reservoir and a humidifier. The downside is that when used in a vehicle, these occupy a large amount of space and consume significant power,” he said.

According to CSIRO researcher and co-author Dr Cara Doherty, the team’s new cactus-inspired solution offers an alternative.

“A cactus plant has tiny cracks, called stomatal pores, which open at night when it is cool and humid, and close during the day when the conditions are hot and arid. This helps it retain water,” Dr Doherty said. 

“This membrane works in a similar way. Water is generated by an electrochemical reaction, which is then regulated through nano-cracks within the skin. The cracks widen when exposed to humidifying conditions, and close up when it is drier.

“This means that fuel cells can remain hydrated without the need for bulky external humidifier equipment. We also found that the skin made the fuel cells up to four times as efficient in hot and dry conditions,” she said.

Professor Young Moo Lee from Hanyang University, who led the research, said that this could have major implications for many industries, including the development of electric vehicles. 

 “At the moment, one of the main barriers to the uptake of fuel cell electric vehicles is water management and heat management in fuel cell systems.  This research addresses this hurdle, bringing us a step closer to fuel cell electric vehicles being more widely available.

“This technique could also be applied to other existing technologies that require hydrated membranes, including devices for water treatment and gas separation,” he said.

The cross-continent team has been working together for over ten years. For this study, Hanyang University conceived and designed the experiments. Using characterisation and modelling expertise, CSIRO researchers were then able to determine how the membranes behaved under changing humidities.

Related news & editorials

  1. ETA’s warehouse has extensive Bonfiglioli stock
    11.01.2018
    11.01.2018
    by      In
    Bonfiglioli’s partnership with its largest Australian distributor, Engineering Transmission Agencies (ETA), brings quality, reliability and performance to Queensland and Northern NSW customers in industries such as mining, manufacturing, bulk materials handling, food and beverage, water and waste.... Read More
  2. Australian flag
    11.01.2018
    11.01.2018
    by      In
    It’s official: Australia is an Innovation Champion. That is the view of the US Consumer Technology Association, which launched its inaugural International Innovation Scorecard at the Consumer Electronics Show in Las Vegas.
    The scorecard is a development from the association’s annual ranking of US... Read More
  3. 10.01.2018
    10.01.2018
    by      In
    Australian company CST Wastewater Solutions has put together an environmentally friendly and cost-efficient wastewater treatment system for smaller, remote and ecologically sensitive community, municipal, agribusiness and industrial applications throughout the Asia-Pacific region.
    The two-stage... Read More
  4. 10.01.2018
    10.01.2018
    by      In
    US-based utility-scale solar power specialist SolarReserve has received development approval for its Aurora Solar Energy Project in South Australia.
    The project is located on farmland 30km north of Port Augusta and is centred on a 150MW solar thermal power station with 1100MWh of molten salt energy... Read More